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Sunmary 

Sharp upper and lover bounds are derived for haaard rates and 

densities of distributions with monotone hazard rate. These bounds 

are related to Chebyshev inequalities in that they are obtained under 

the condition that certain monents are known. Similar bounas are also 

obtained when the density is a Polya frequency function of order two« 



1.    Introduction.    There is, of course, a large body of literature 

devoted to the subject of Chebyshev-type inequalities, which provide 

bounds for the probability of various events in terms of moments.    In 

spite of this, there seems to be essentially no inequality known which 

gives a bound for the density in terms of moments.    One reason for 

this is that the moments can in general be possessed by a discrete 

distribution.    Furthermore, densities are not unique when they do exist, 

but may be arbitrarily defined on a set of measure zero to violate any 

bound. 

There are, however, a number of Chebyshev inequalities known which 

apply to distributions    F    subject to restrictions which may force a 

density to exist» at least over part of the support of   F.    Furthermore, 

the restrictions may suggest a natural version of the density.    As an 

example, ;ve cite the result of Gauss  [7]  which requires    1 - F(x)    to oe 

convex in    x ^ 0. 

In Sections 2 and 1+ of this paper, we obtain bounds on both the 

density and hazard rate under the assumption that the hazard rate is 

monotone,    A distribution    F    is said to have increasing (decreasing) 

hazard rate denoted IHR(DHR) if    log[l - F(x)]    is concave on the support 

of   F    (convex on    [0,=°)).    In [ll], it is shown that if    F    is IHR(DHR), 

then    F    is absolutely continuous except possibly for a jump at the right- 

hand (left-hand)  endpoint of its interval of support.    Hence    F   has a 

density,  say    f, with the possible addition of one saltus.    The ratio 

q(x) = f(x)/[l - F(x)]    is called the hazard rate of    F, and if   F    is 



IHR(DHR), there Is a version of f for which q is increasing (decreasing). 

If F is IHR, such a version of f satisfies f(t-) ^ f(t) ^f(t+) since 

otherwise q would not be increasing. Therefore, we seek upper bounds 

on f(t+) and lower bounds on f(t-), and always refer to a version of 

the density for which q is monotone« When F is OHR, the same ccnments 

hold with "+" and "-" interchanged. 

In Section 3, we obtain bounds on q(t) and f(t) assuming that 

f is a Polya frequency density of order 2 (PO* B^0^» ^ is PF2 

if log f(x) is concave on the.support of F, an interval. This 

condition implies that F is IHR, but not conversely. It may be regarded 

as a smoothness condition, and guarantees that the density is essentially 

unique, unimodal, fluid continuous within its interval of support. Proper- 

ties of PF2 densities are discussed in [9] and [12]. Many life 

densities such as the normal and certain of the gamma and Weibull family 

are PF2. 

The hazard rate has many aliases and as many uses. In reliability 

theory [3], q(x) is also called the "failure rate", and is a measure 

of the quality of a device or structure at age x. In the theory of 

the strength of materials, it is called the "risk function", and is a 

function of the stress applied to a material, rather than a function of 

time (see, e.g. [13]). In the theory of fatigue failures, the extreme 

value distributions have been widely employed by Gumbel [8] and oy 

Freudenthal and Gumbel [6]. The distributions called Type I and  Type III 

by Gumbel have increasing hazard rate. In medical and actuarial work, 

the hazard rate is called the "force of mortality" or the "age specific 



failure rate". 

In congestion theory (i.e., queueing theory, traffic theory, 

telephone trunking theory) the renewal density m(t) (renewal rate) 

is of interest. For IHR distributions, 

f(0) ^m(t) <q(t) 

(c.f. [2, p38^]). Bounds on the hazard rate provided in this paper 

therefore also provide bounds on the renewal density. 

Throughout this paper, we assume F(O-) = 0 and write u  for 
OB rT 

$  xrdF(x), Frequently, we use the easily varified relation 
0 

x 
1 - F(x) = exp[- S  q(z)dz]. 

0 

Many of our arguments, particularly in Sections 3 and 4., utilize the 

fact that IHR distributions intertwine members of certain families of 

extremal distributions in rather specific ways»   A fact often used is 

that if   F   and    G   have   k   moments in common, they must cross at least 

k   times.    If   G   is exponential in some interval, say    (a,ß), then 

because    1 - F    is log concave and    1 - G   is log linear on    (Ojß), F 

and   G    can cross at most twice in    (a,ß).    If there are two such crossings, 

the first crossing of   1 - G    by   1 - F   must be fr-cm below, and the second 

must be frcm above. 

2.    Bounds on densities and hazard rates in terms of a sinple expectation. 

We consider first a slight generali-zation of the condition that   F   is 

IHR, namely that    a(x) = 6(x)q(x)    is increasing in    x ^ 0, where   9(x) 2 0 

for   x ^ 0   and   q   is the hazard rate of   F. 



Several proofs of this section depend upon the fact that if 

F(x) /^x G(x) for all x, and C(x) is increasing in x ^ 0, then 

(2.1)   5 C(x)dP(x) X  J C(x)dG(x), 
0        ^ 0 

The inequality is reversed for C(x) decreasing in x ^ 0. 

We begin by defining two distributions which play the role of G 

in the applications of (2.1) below. Fix t > 0, suppose that 6(x) > 0 

for x ^ t, and let 

1 - Ga(x) = 

li 

In case 6(x) > 0 for all x £ t, let 

1 - HÄ(x) ^ 

0, 

x^ t 

e3q){-a 5 dz/e(z)},  x> t . 
t 

exp{-a 5 dz/e(z)},  0 ^ x < t 
0 

x > t. 

If R(X) is increasing in x ^ 0, then 

a(x)^ 

a(t),  x^t 

x > t 

, and a(x) ^ 

0,    x < t 

a(t)  x ^ t. 

so that 

qU)^ 
a(t)/e(x),  x^t 

x> t 

, and q(x) ^ 

0, x < t 

a(t)/e(x),  x^t. 

Hence 



Q(x) ^ 5 q(z)dz ^ 
0 

S a(t)dz/e(z),      x ^ t 
0 

•, x > t , 

and 

or 

Q(x) > 

0, x< t 

a{t) S dz/e(z),     x ^ t, 
t 

(2.2) 1 - Ha(t)(x) ^ 1 - F(x) <, 1 - Ga(t)(x)1 

Theorem 2.1«    If   a(x)    is increasing in   x ^ 0, 9(x) > 0   for   x ^ t, 

and if   ^    is a strictly monotone function on    [0,*)    such that 
00 

5 C(3c)dF(x) = v < *, then there exists a unique solution a., of 
0   « _1 

i 

v = 5 C(x)dG (x) s T-i (a-.) whenever t < C~ (v). Furthermore, 
0     al     1    1 

-1. 

(2.3)    f(t+) ^ q(t+) £ 

a1/e(t), t<c"-L(v) 

-1, 
t ^C"x(v). 

Proof.    The second inequality is trivial and we need only consider the 

first.    Assume that    C(x)    is increasing in    x, so that by (2.1) and 

(2.2), 

v = 5 C(x)dF(x) < S C(x)dG ,n(x) H (p.(a(t)). 
0 0 al  ; 1 

Clearly ^J, (a) is strictly decreasing and  continuous in a, lim <?, (a) = 
a-0 

= lim C(x) > v, lim o, (a) = C(t). Thus, if v > C(t), there exists a 

unique solution a. of (?-.(a,) = v; furthermore, a, ^ a(t) yields (2.3) 



The proof for decreasing C is analogous. 

In case C(x) = x so that v = »i,, (2,3) reduces with 6(x) "1 to 

(2.-0    f (t+) £ q(t+) ^ 
l/^-t), t<li1 

and if   C(x) = x     so that   v = n0, (2.3) with   e(x) a l   beccnes 

(2.5) f(t+) i q(t+) i 

+ J&0-t
2 

1/2 
^-t' 

t < n 

♦ v    1/2 

Further explicit results are given in Theorem 2.3* 

Remark. Theorem 2.1 requires that 9(x) > 0 for x ^ t. A special 

ease of interest is 9(x) = 0, x < XQ < t, and 9(x) = 1, x ^ x., so 

that the hypothesis that a is increasing becomes the hypothesis that 

q is increasing in x ^ x.. Thus Theorem 2.1 can be applied to the 

case that q is actually initially decreasing. 

Before discussing the sharpness of (2.3), we prove 

Theorem 2.2, If a(x) is increasing in x ^ 0, 9(x) > 0 for x ^ t, 

and if C is a strictly monotone function on [O,00) such that 

J C(x)dF(x) = v < *, then there exists a unique solution a« of 
0   • , 
v = 5 C(x)dH (x) ■ ^^(ap) whenever t > C~ (v). Furtheraore 

0     a2     ^ ^ 

(2.6)    q(t-) 2 

.-1. a2/e(t), t>c"-L(v) 

0,       t £ C'^v), 

and 
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(2.7) f(t-) ^ 0. 

Proof.   We prove (2.6) only for   C(x)    increasing, in which case it 

follows froo (2.1)  and (2.2) that 

00 00 

v = 5 C(x)dF(x) 2 5 C(x)dH m(x) = <pJa(t)). 
0 0 a(t, 2 

Clearly   ^^(a)    is strictly decreasing and continuous in   a, lim cp:?(a) = C(t), 
a-0   ^ 

lim ^^(a) = C(0) < v.    Thus, if   C(t) > v,  there exists a unique solution 
a-*» 
a2    0^   '2^*^ = v'  ^^ir^ermore,    a^ ^ a(t}    and this yields (2.6). 

Remark.    Theorem 2.2 requires that   9(x) > 0, x ^ t. 

In case   G(x)  5 1   and   C(x) = x    so that    .  = |i., a«    can be 
-a2t/n1 

obtained from Table I of [l], where    e    " is tabulated. 

Although   H        does not have a density at    t, we can still define 
a2 

two versions of its hazard rate by 

q"  (x) 

lim[H    (xfA)-H    (x)]/A[l-H    (x)],      x<t 
ATO    a2" a2 a. 

x > t. 

and 

qH (x) = 

llm[H    (xfA)-H    (x)]/A[l-H    (x)],      x<t 
AiO    a2 

x ^ t  . 

Similarly, let   q~  (q_)   be the left  (right)  continuous hazard rate of    G 
U Ü a. 



Theorem 2.1'. If t < C' (v), equality in (2.3) is attained uniquely 

by the hazard rate q«. If t ^ C~ (v), equality in the right side of 

(2.3) is attained by the hazard rate q„j the bound on f(t) can be 

approached arbitrarily closely by distributions of the form 

(2.8)   1 - G(x) = 

-v e   ,        0 ^ x^ t 

-b-t-bpU-t) 
e 1   ^   ,  t^x, 

where b, satisfies 5 C(x)dG(x) = v and b- -• •. 

Theorem 2.2'. If t ^ C (v), equality in (2.6) and (2.7) is attained 

by the hazard rate q«. If t > C~ (v), equality in (2.6) is attained 

uniquely by the hazard rate qZ.    For t > C~ (v), equality in (2.7) is 

approximated by the distributions given in (2.8) with h0 - 
0D. 

We omit the proofs of Theorems 2.1' and 2.2'. It is straightforward 

to verify that the given distributions attain equality. Uniqueness 

follows from an examination of the proofs of Theorems 2.1 and 2.2. 

Remark. Since the density of G   is PF» (indeed PF^), the above 

bounds which are attained by q^. cannot be improved with this additional 
u 

assumption.    However, the non-trivial lower bound of  (2.6) is attainei 

by   qH, and since   H   does not have a PF» density,   (2.6) can be improved 

when    f    is PF_.    Also in this case, f   has a non-trivial lower bound at 

C~ (v)  (See -action A.). 

Although the bounds of Theorems 2.1 and 2,2 are sharp, the/ are not 

explicit;  the following theorem gives an explicit result that is sharp 

in only very special cases. 
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00 

r Theorem 2.3.    If   F    is IHR, and   ^    = i x dF(x), where   r ^ 1, then 
r  0 

(2.9) f(t+) £ q(t+) ^ tr(^l)]
l/r ,    0 ^ t < 1/r # 

V- vrr' 
The inequalities are sharp for r = 1, and in case t = 0, for r ^ 1. 

Proof. Since q(x) is increasing in x, 

q(t)^^— [Q(^/r-) -Q(t)] 

^r 

x 
where    Q(x) = J q(2)dz.    The right-hand inequality follows fron this, 

and the bound    1 - r(^/r) ;> exp{-[r(r+l) j1'1*}   (U], Theoren 3.8).    In 

case    r = 1,  (2.9) reduces to  (2,0, which is sharp.    Equality is 

attained in (2.9) with    t = 0    by the exponential distribution with r 

moment    u   . r 

Remark.    The inequality 

f(0) i     P ■1~1   , i,j  = 1,2,... 

was given in [2, p383j where \ = ^ /r(r+l). Bounds on f'(0) assuming 

f is PFp and f (0) = 0 are given in [9, pl030]. Additional bounds can 

be given on derivatives of f at t = 0 assuming higher order total 

positivity conditions [10]. 

In case a(x) = 9(x)q(x) is decreasing, the results possible are 

more limited than in the increasing case. We obtain only upper bounds 

for q(t)  and f(t) under restricted conditions, and give some examples 

to show the impossibility of certain other non-trivial results. 
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Let e{x) > 0 for all x ^ 0, and let 

1 - K.(x) = 

X 
exp{-a $  dz/eU)},  x^ t 

0 
t 

exp{-a 5 dz/9(z)},  x > t- 
0 

If a(x) = e{x)q(x) is decreasing in x ^ 0, a(x) ^ a(t) for x ^ t, 
x x 

and a(x) ^0 for x > t. Hence Q(x) = j q(z)dz ^ a(t) J dz/9(z) for 
0 0 

x > t, so that 

(2.10) 1 - F(x) <,  1 - Ka(t)(x). 

Theorem 2,L,   If a(x) is decreasing in x ^ 0 and C is a strictly 
00 

decreasing ♦'unction on    [0,00)    such that   J C(x)dF(x) = v < »j  then there 
OD  o 

exists a unique solution a- of v = i C{x)dK (x) s (p-(a-). Furthermore 
JJ 0 a3 j)    JJ 

(2.11) q(t+) ^a3/e(t). 

Proof.    By (2.1),  (2.10) and the fact that    C    is decreasing, v ^9   (a(t)). 

Clearly   T-,(a)    is strictly increasing and continuous in    a, lim <T>-(a) = 

= C(0) > v, lim ^-(a) = lim C(x) < v.    Hence    a.    exists uniquely and 
a-0 -^    x-*» J 

since v ^^^(^(t)), a(t) <a . 1| 

Theorem 2.5« If a(x) is decreasing in x ^ 0 and if ^ is a strictly 

increasing function on [O,00) such that lim C(x) = M < «> and 
ao x-f0 

J C(x)dF(x) = v < o», then there exists a unique solution a. of 
0   t 4 

v = 5 C(x)dK (x) + MK (t) = <P,(a ); furthermore, 
0     a^      \ 4 4 

(2.12) q(t) < a^/e(t). 

Proof.    By (2.1),  (2.10) and the fact that    C    is increasing,    v <9/(a(t)) 

Cleeurly   9. (a)    is decreasing and continuous in    a, lim 9. (a) = C(0), 
^ a-*0 
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lim 9.(a) = M.    Hence    a.    exists uniquely and since   v ^ 9,(a(t)), 
a-0    ^ 4 4 

(2.12) follows. 

Equality is attained in (2.11) uniquely by the hazard rate of the 

(improper) distribution K , and in (2.12) by K , so that (2.11) 

and (2.12) are sharp. 

The following theorem provides upper bounds for the density in 

case F is DHR, The proof given is quite unlike the preceding proofs, 

but is similar to the kind of argument used in [5]. 

Theorem 2.6. If F is DHR and C is a monotone function on [0,*) 

such that j C(x)dF(x) = v < ®, then 
0- 

(2.13)   f(t-) < max[ sup aae~ , sup be" ], 
0<a£        b^a» 

where for each a, a = a(a) satisfies 

(2.U)        aa J  C(x)e      cix +  (l-a)C(O) = v, 
0 

-atfx and    a* = a(l)    is determined by   a-  J C(x)e~t*    dx = v. 
0 

Proof.    Let 

1 - L (x) = 
a 

-ax v   n ae      ,      x > 0 

1, x < 0, 

where for each a, a is determined by (2,1^), and suppose that for all a, 

F ^ L . Since L. and    ?   satisfy J VdL, = j CdF = v, 1 - L, and 1 - r 

must cross at least once (otherwise, by (2.1), we obtain a contradiction). 

Since 1 - F is log convex and 1 - L, is log linear, 1 - L,  can cross 

1 - F only once, and this crossing must be from above. Denote by u 
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the point where   1 - L     crosses   1 - ?    from abo\e if such a crossing 

exists, and otherwise lut    u   = aD,    By the log convexity of    1 - F 

and log linearity of    1 - L , it can be shown that   u     is continuous 
a a 

in a. Furthermore, since lim 1 - L (x) = 0 for all x > 0, we 

conclude that lim u = •• 
a-0 a 

a-0 

-bx 
Now let 1 - M^x) = e  , x ^ 0, so that Ma# = ^ and 1 - Ma# 

crosses 1 - F from above at u.. Let v,  be the crossing of 1 - F 

by 1 - IC from above if such a crossing exists; otherwise, let v. = 0. 

Then since lim 1 - M, (x) = 0 for all x > 0, lim v = 0, and again it 

can be shown that v,  is continuous in b, 
D 

Thus we have shown that for each point t ^ v,, there exists a 

such that 1 - L  crosses 1 - F from above at t. But this means 
a 

that at t, the density of F is less than the density of L , or 

—at 
f(t) ^ aae   where a is determined by (2,1/,). Similarly, for each 

point t ^ v,, there exists b such that 1 - M, crosses 1 - F f 

above at t, and f(t) ^ be" . 

iron 

Theorem 2.6*. If C(x) is increasing in x, equality can be attained 

in (2.13). 

-at     -at 
Proof. If the bound is attained by  sup aae "' = ^n6  * then equality 

0<a<l u 

is attained by the density of   L    .    If the bound is attained by 

-bt      "V Qo 
sup be       = bne        ,  then equality is attained by the distribution 

*** .   -bx O 
e, 0<;x<t + f 

1 - M(x) = -b0(t+€)-c(x-t-€) 
X ^ t  +  € 



u 

where    c    is determined by the moment condition   5  C(x)dM(x) = v.    Such 
-b0x 

a distribution is DHR,  (i.e., c < bn),  since   J C(x)bne        dx < v, u 0 u 

Corollary 2.7.    If   F    is DHR and      5 xrdF(x) = ^    < »,  then 
0 r 

(te)-1, t^xyr 

(2.15) f(t-) <, \\-r
l/re       r    , ^iti (rfl)X^r 

X^rV^H t^Cr^DX^, 

where   \    = ^ /r(r+l). 

Proof.    This result is a direct application of Theorem 2,6. 

Theorem 2.8.    If    F    is DHR, u    = 5  xrdF(x), and    F(0+) = 0,  then 
r  0 

(2.16) f(Of) = r(0+) ^1//r. 

Proof. Since Q(x) = -log(l - ?(x)) is concave, Q(x)/x is decreasing 

in    x, and    q(0)  = lim Q(x)/x 2 ^V^/1)/^-    But    1 - Fi^) < 
_rr/r+1^l/r        x-0 

< e L ' [4], and the result follow?. 

Note that equality is attained in  (2.16) by the exponential distri- 

bution. 

In order to construct examples  showing the impossibility of certain 

other non-trivial bounds, we consider 

1 - N(x)  - 

-bx , e      , x < z 

-■bz+c(x-z)1 x j  v ,       x ^ z 

where    b    and    c    jointly satisfy the moment condition 
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(2.17)   v = 5 C(x)dN{x) = a(> ,b) + p(i,b>r(l,o), 
0 

o(l,b) = 5 C(x)be-bx(ix, p(«,b) = e-bz, Y(Z,C) = c 5 C(x)e-c(x-z)dx. 
0 z 

Note that lim a(z,b) = C(0), 11m a(z,b) = 0, Urn Y(Z>C) = C(z) and 
tM» b-0 c-*> 

Um Y(Z,C) = lim C(x). Clearly N has hazard rate 
c-0       x-» 

qN(x) = 

b,  x < z 

o,  x > z. 

In the following, q    is decreasing and    | C(x)dF(x) = v. 
0- 

(i).   If   C   is decreasing and    t > Ot then   QU) ^ f(t) ^ 0    is sharp; Choose   c, 

v > t > lim C(x), and    c   sufficiently small tha*    a(z,0) + ß(z,0)Y(z,c) < c. 

But   llm[o(z,b)+ ß(z,b)Y(z,c)]= C(0) > v; hence by continuity, for sufficiently 
b*» 

small    c, there exists    b > c    satisfying (2.17).    With    z < t,  this 

shows the impossibility of non-trivial lower bounds for    q(t)    and   f(t). 

(ii).    If    C    is increasing and    lim C(x) = M < CD. then    Q(t) 2 0    is sharp: 

Observe that   Y(Z,C)    increases nonotoncially to   M    as    c    decreases to 

zero, so that    a(z,b) + ß(z,b)Y(z,c) < a(z,b) + ß(z,b)M.    Since    ß(z,b) 

decreases monotonically to zero as    b    decreases to zero, and since   a(z,b) 

is bounded and    lim a(z,b) = 0, ve conclude that (2.17)  has a solution 

in   b    for fixed    c    sufficiently small.    With    z < t,  this  shows the 

desired result, 

(iii).    If   C    is increasing and    t > 0.  then   q(t) < "    is sharp;    For 

fixed    b    sufficiently large,    C(0) - a(z,b)    and   ß(z,b)    are arbitrarily 

small.    Since    C(0) < v, and since   Y(Z,C)    is monotone in    c,  there exists 
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a unique solution   c    of (2.17).    Furthermore, lim c = 0.    With    z > t. 
b-f* 

the result follows. 

With the exception of Theoren 2.6, the results of this section 

have been obtained by essentially the sane method.    While this method 

is straightforward, it does not always seem to be adaptable to more 

complex prcblecis.    In Sections 3 and 4i we therefore utilize a third 

method, more closely related to that of Theorem 2.6.    Before proceeding, 

however, it may be worthwhile to illustrate the method in an alternate 

proof of Theorem 2.1 (for the case that    9(x)  =1). 

-1, Let   (7    = (Gv : 0 ^ w < C    (v)}, where 

1, x < w 

(2.18) 1 - G (x) - 
s   -a(x-w) N e ,      x ^ w 

and    a    is determined by 

(2.19) 

Let   g, 

(2.20) 

5  C(x)dG (x) = v. 
0 V 

[G    : C_1:v) < w]    wher« 

1 - G (x) = w 

-bx        n s       , e      ,      u < x < 

0, x ^ v 

and b is deterrdned by (2.19). 

We remark, but do not prove, that a and b are uniquely determined 

by (2.19). 
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Altemat« Proof of Theorem 2»!. 0(x) a 1. Consider the case that 

t < C (v). Let G %&,  where a, satisfies (2.1S). We may assume 

F i C.    and F(x) > 0 for x > t since otherwise the inequality is 

ocr/lcrua« By log concavity, 1 - F(x) must cross 1 - Gt(x) fron below 

say at x^ > t. Furthermore, 1 - F(x) must be continuous at x- and 

possess a right derivative at x.. The slope of 1 - GAx)   at x  is 

less than the slope of 1 - F(x) at x^; i.e. 

f (xj) ^ a1e ^ ^   . 

Since 1 - FCx-j) = 1 - G. (x-.), qCx,.) ^ a,, and by monotonicity of q, 

q(t+) <£ a^^. Since 1 - Gt(t) = 1, equality is attained in (2.3) by 

Gt f 6V  |i 

A similar proof of Theorem 2.2 utilizes both 6^    and £_• 

3. Bounds on FF? densities and hazard rates. In this section we 

strengthen the hypothesis that F is IHR by assuming that F has a 

PF. density f. This stronger hypothesis makes possible improvements 

of the inequalities of Section 2 except in cases where equality is 

attained Ijr a distribution with PF. density (see the remark following 

Theorem 2.2')• 

Theorem 3.1. Let f be a PF2 density such that f (x) =0 for x < 0. 

Let C be a function continuous and strictly monotone on [O,00) such 
m 

that S  C(x)f(x)dx = v exists finitely. Then 
0 

(3.1)    q(t) i 

a1,  t < C^Cv) 

t^r1(v). 
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(3.2)    f(t) <, 

a. 

-bt -bt 

t < r^v) 

-i. be-ü7(l - r0"),  t > C'^v), 

where a, is the unique solution to 

t     -«-(x-t) 
v = i C(x)a1e      dx 

0    1 

and    b    is the unique solution to 

t 

0 
(3.3) v - 5 C(x)be-bxdx/(l - e-bt) 

All inequalities are sharp. 

Proof.     (3.1) and (3.2)     for    t < C    (v)    follow from Theorem 2.1,  and 

sharpness follows from the remark following Theorem 2.2'.    In [5, Lemma 

5.3],  it is proved that for    C    increasing,   (3.3) has a unique solution    b 

whenever    t > C~ (v);  by obvious modifications  of the proof given there, 

we obtain the same result for    C    decreasing.    Let 

gt(x) = 

b€~bx/(l - e~bt),      0 ^ x < t 

0, x > t 

and suppose that f ^ gt. Since log f(x) is concave and log g. (x) is 

linear in xe[0,t], there are at most two crossings of f by g  (see [9]). 
00 OD 

Since    f    and    g      are densities satisfying    5  C(x)f(x)dx = 5 C(x)g  (x)dx = v, 
Z 0 0 Z 

they cross at least twice.    Hence    f    and    g      cross exactly twice in    [0,t]; 

moreover, the second crossing of    f   by   g.     must be from below, and we 

conclude that    f(t) < gt(t)    as asserted.    Of course,  equality in (3.2) 

for    t ^ ^"^"(v)    is attained by   g. .   || 
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Theoren 3.2.    Let    f    be a PF- density such that    f(x) = 0    i'or    x < 0. 

Let    C(x)    be a function continuous and strictly monotone on    [0,°°)    such 
CO 

that    S C(x)f(x)dx = v    exists finitely.    Then 
0 

(3.-0 q(t) 2 
t < C^Cv) 

m 

where 

inf g-CtVi  gn(x)dx,      t ^ C"X(v), 
n^t t 

be~bx/(l - e"^),     0 < x < n 

t*™- 
0, elsewhere. 

and    b    is uniquely deteirdned by   $ C(x)^ (x)dx = v 
0 ^ 

.-1, Proof«    Sharpness of the trivial lower bound for    t < C    (v)    follows fron 

Theoren 2.2'.    Let    x*{^)    be the unique point where    g:     cresses i ron 

below, and suppose first that    t < x^00).    Then there exists    SL. > t    such 

that    f(t) = B    (t)    (the proof of this in case    C    is increasing is given 

in [$, Proof of Theorem 5.1'»  the -edifications necessary in case    C    is 

decreasing are obvious and not extensive).    But    f(t) = g    (t)    together 
0 ~0 

with    1 - F(t) ^ J    g^  (x}dx    (arain, see  .5, Proof of rheorem 5.1]) yields 
t    *-*c 

the desired result. 

It rer^ins to consider the case that t 2 2C-(3C) = x^". -hen by an 

argument identical with the case t < x* we obtain 

q(x») 2gJ**)/)  g30(x)dx 
x-:i 

which together with q increasing yields (3.0 in this case. 

As noted in Section 2, P?« densities have nor.-trivial lower bounds 

at "mc-ent points". In particular, we obtain lower bounds on f(p.  ) 

for r ^ 1. To do this, we use the following 
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Lemma 3.3.    If   J (p(x)f1(x)±x = j 9(x)f (x)dx < •, and if the support of 

f^    is contained in the support of    f , then 

(3.5) J <p(x)f1(x)log[f1(x)/f2{x)] 2 0. 

Proof.    J 9(x)f1(x)log[f1(x)/f2(x)]dx = - J 9(x)f1(x)log[f2(x)/f1(x)]dx ^ 

^ J <p(x)f1(x)[l-f2(xy^(x)]dx=J<p(x)f1(x)dx - J (p(x)f2(x)dx - 0.    The 

inequality follows directly from    log z < z - .1, z > 0.  I| 

Remark»    With   ^(x) = 1, this is the veil'-known "information inequality". 

Theorem 3.^.    Let   qp    be a non-negative function and    \    be a number such 

that 

0 < j T(x)f(x)dx = J T(x)\eAxdx < •, 
0 0 

If    f    is PF.    and    f (x) = 0, x < 0,  then 

(3.6) f(a) >\e -\a 

where    a = (j xp(x)f(x)dx)/(i q)(x)f(x)dx). 

Renark.    \    satisfying    j" ^(x} 
0 

exist in general.    However,  if 

exists. 

f(x)dx = j" y{x)\e~    dx   does not necessarily 
0 

o    is monotone, then such a   \    always 

Proof.    Since    f   is log concave, log f(x)    lies below its tangent at    a, 

i.e., (x-a)f'(x)/f(a)+lcgf(a) > log f(x).    If   o (x) 2 0> 

?(x)(x - a)f'(a)/f(a) + 7(x)log f(a) ^ <p(x)log f(x) 

and upon integrating, we obtain 
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m^- j <p{x)(x - a)f(x)dx + log f(a) 5 <p(x)ffx)dx > J (P(x)f(x)log f(x)dx 
f^a) 0 0        0 

00 OD 

^ i (p(x)f(x)[log X - \x]dx = (log \ - aX) i cp (x)f (x)dx. 
0 0 

The second inequality follows from Lerama 3.3. By the definition of a, 

the first term on the left of this inequality is zero, and we have 

00 00 

log f(a) S  q>(x)f(x)dx 2  (log X - ax) i <p(x)f(x)dx. || 
0 0 

Corollary 3.5.    Let    f   be a PF2 density such that    f(x) = 0    for   x < 0, 
00 

and   ji   = i xrf(x)dx.    Then if    r ^ 1, 

(3.7) 0f(^/r) i [nr+D/^r ^r*!)]1^^ 

Proof.    If    r = 1,  the result follows from Theorem 3.A with   cp(x) si. 

If    r > 1,  let   (p(x) = xr +  (ii    .  - ^^r+1^r)/(n1'r - ^1).    Then since 

l/s 
Ji '  is increasing in s > 0, it follows that (?(x) > 0. By straight- 

forward algebra, a = v.1'*.    Thus X = [r(r+l)/n ]  , and (3.7) follows. 
r r 

The bound of (3.7) for r = 1 was originally communicated to us 

by Samuel Karlin. 

A. Bounds on densities and hazard rates when F is IHR with specified 

first and second moments. Assume that F is IHR with p.. = 1 and \i 

specified. In [5], the class of extremal distributions for bourling F 

were determined. This same class of distributions is also important in 

bounding f and q, and we begin with some definitions. 

Let T0 = 1 - v^2-l (since F is IHR, ^ < ^2 < 2|i^ so ^2 - 1 > 0), 

and let T-| = - aQ logU - ^n) where a- in [0,1] satisfies 
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^^ 
log(l -a0)] 

Let   63 = {0T, T 2 T^     where 

U.2) 1 - GT(x) = 
1, 
e-a(x-A), 

0, 

x < A 

A^x^T, 

x > T 

T ^T. 

and where    a   and   A    in    [O^T-]    are determined by the moment conditions, 

i.e., 

U.3) I  [1 - GT(x)]dx- \i1 = 1, 

UM i x[l - GT(x)]dx - \ij2, 
0 * 

Let   ^ = [GT : T0 ^ T ^ ^j, where 

/   -a1x 
e 

U.5) 1 - GT(x) - 

x < T 

-a T-a (x-T) 
* ,      x^ T 

T0 ^ T ^ T1 

and a, < a? are determined by the moment conditions (^.3), ii-i)  as 

before. It is shown in [5, Lemma 3.4-] that a,A and a-, »a- satisfying 

(^.3) and (4.4) exist uniquely. It is also shown in [$] that for t ^ 0, 

inf[l - GT(t)] ^ 1 - F(t) < sup[l - GT(t)] 

where the extremums are taken over (j^ J   Q,.    These bounds have been 

tabulated for [i, = 1 and selected values of |A?(1 < ^-, < 2) [l]. 

Theorem 4.1. If F is IHR with density f, F(0) = 0, IA, = 1 and ^2 

is specified, then 
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V        ' = 0 
a, 0 < t < T 

J(.2-l)-
1/2,  t-T0 

00 t ^v 

(^.7) q(t+) <, a2, 

and 

(A.8) f{t+) ^ a.e i 

\^^ \' 

T0 < t < T^ 

where an is defined by (^..1); a is defined by GT e Q~    with A = t 

and some T ^ T,; a, and a^ are defined by G- e Q.    with T = t. 

All inequalities are sharp. 

Proof. Case 1. 0 < t < T . Either F(t) = 0 and f(t) = 0, or 1 - F(x) 

crosses 1 - GT(x) from below at, say t ^ t, where 1 - GT(x) is given 

by U. 2) with A = t. Therefore f(t0) < gT(t0) and 1 - F(t0) = 1 - GT(t0), so that 

<:l(to) ^ ^T^O^ = a, where ST (qT) 
is the density (hazard rate) of G-, 

Since t < tn and q is increasing, we have that q(t+) < a. Equality 

in f(t+) ^ a is attained by the density of G-,. Letting t decrease to 

zero, we see that f(0+) < lim a - an. 
tiO 

Case 2. T0 < t < T.. From [5, Theorem 3.3] we know that 1 - F(t) < 

1 - Gt(tj where G.  is given by (^.5). This together with the fact that 

F and G  must cross at least twice implies that 1 - F(x) must cross 

1 - G. ^x) from below at some t- > t. Hence q(t+) <£ q(t ) < q (tn) = a_ 

;here q.  is the hazard rate of G.; and this is (A.7). From (4..7) and 
-at 

1 - F(t) ^ 1 - Gt(t) = e   , we obtain (^.8). Equality is attained by 

G.  in both (4.7) and (/..S). Letting t decrease to T-, we obtain from 
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U.10)   f(t-) ^ 

0, 0 ^ t ^ To 

nin[g(t),h(t)],   T0 < t ^ T1 

0, t > T1, 

-a,t "(f A) "I 
where g(t) =  inf ae~a ~   and h(t) =  inf a,e 

o<A$0 T0^r^r1 
Proof« If 0 ^ t ^ Tn, the lower bounds are attained by GT . If t > T1, 

the lower bound is attained by G . Suppose now that T < t ^ T^ . Let 

s(T) denote the crossing in (A,T) fron above of 1 - G_ efc by 1 - F 

if such a crossing exists; otherwise, let s(T) = T, 

Case 1. T- < t < 3(1,). Let aT e 6,,  and let w(T) denote the point at 

which 1 - F(x) crosses 1 - GT(x) from above in (0,T). Then s(T1) = 

w(T, ), lim w(T) = 0 and w(T) is continuous in T (see [5,  Proof of 
TiTQ 

Theorem 3.1]). Hence there exists T such that w(T) = t. Since 1 - GT(x) 
-a^ t 

crosses 1 - F(x) from below at t, it follows that f(t-) ,> a-e ^ , 

Case 2. s(T1) ^ t ^ sC»). Let G_ c Q^;  by continuity of s(T), there 

exists T such that s(T) = t. Since 1 - F(x) crosses 1 - GT(x) from 

above at t, f(t-) ;> ae"^1"^. 

Case 3. s(00) ^ t < T1, If s(0D) > T, , then of course this case is vacuous. 

Otherwise, let v(T) be the crossing in (T,00) from above of 1 - GT(x) 

by 1 - F(x) if such a crossing exists, and let v(T) be the right-hand 

endpoint M of the support of F if such a crossing does not exist. Then 

v(Tn) = s(0D) and lim v(T) = M. 3y continuity of v, there exists T 

in [T0,T, ] such that; 1 - F(x) crosses 1 - G-,(x) from above at t, 

and the argument is concluded as in the previous cases. 
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